Averaged Bad Beat Jackpot = $300k - 50k = $250k $250k divided by $0.50(rake) = 500k raked pots 500k raked pots is 40% of the total hand played, which is then 1,250,000 hands. So by my estimates the odds of hitting a Bad Beat Jackpot are about 1 in a million. I wonder how close this is to the real thing. To help you shake off a bad beat, we'll toss a bonus your way. Did a four of a kind or better beat your aces full of kings? Collect a Bad Beat Bonus of 100X the big blind, and you'll pocket up to $1,000. Brush the dirt off your shoulders and get back in the game. In order to claim the bonus. As the odds of hitting a bad beat in poker increases, the jackpot will be hit more frequently, subsequently meaning the amount to be won will usually be lower. Bad Beat Poker Conclusion. Bad beats in poker are just a normal part of the game. Jackpot Poker Are Back! One Spin Can Change Your Life! Starting Wednesday, March 18th 2020, we're offering Jackpots with a 10x bigger maximum payout over our regular Jackpot Poker games.Buy-in, Spin, and Win!Our special $1 Million Jackpots have buy-ins of $5 and $15.
Introduction
'Bad beat' is a term that can mean having an outstanding chance of winning a bet, only to still lose. The term can be used in any form of gambling but is most commonly applied to poker. Many poker rooms offer a progressive jackpot for very unlikely bad beats. Various other rules are added to ensure that only surprising bad beats win. Below I present tables of bad beat probabilities, starting with the most liberal rules, and ending with the most stringent. The most stringent rules, the 'Bad Beat Type 3', are the most common, in my experience.
Following are the rules for a type 1 bad beat.
- Both the bad beat and winning hand must be the best possible combination of five cards. In cases where the same hand can be created multiple ways (for example player has AK and the board shows AAKKQ) the player's hole cards will take priority.
- Both the bad beat and winning hand must make use of both hole cards.
- A full house must be beaten by a four of a kind or higher.
'Bad beat' is a term that can mean having an outstanding chance of winning a bet, only to still lose. The term can be used in any form of gambling but is most commonly applied to poker. Many poker rooms offer a progressive jackpot for very unlikely bad beats. Various other rules are added to ensure that only surprising bad beats win.
The rules for a type 2 bad beat are the same as type 1, plus any four of a kind, whether the bad beat hand or winning hand, must contain a pocket pair.
The rules for a type 3 bad beat are the same as type 2, plus a full house may not make use of a three of a kind entirely on the board.
In my experience, is the most common format for bad beat rules is type 3. The additional rule for type 3 makes very little difference, compared to type 2.
The following table shows the probability of each bad beat hand under all three types of rules. The table is based on a ten-player game in which nobody ever folds. The probabilities are for any pair of players meeting the qualifying rules. If you want to know YOUR probability of winning, you should divide the probability in the table by 10.
Bad Beat Probabilities
Bad Beat Hand | Type 1 | Type 2 | Type 3 |
---|---|---|---|
Any full house | 0.00203329 | 0.00050305 | 0.00049508 |
Full house, three 3's or higher | 0.00189512 | 0.00046978 | 0.00046204 |
Full house, three 4's or higher | 0.00175159 | 0.00043444 | 0.00042728 |
Full house, three 5's or higher | 0.00160333 | 0.00039706 | 0.00039028 |
Full house, three 6's or higher | 0.00144965 | 0.00035741 | 0.00035145 |
Full house, three 7's or higher | 0.0012936 | 0.00031767 | 0.00031266 |
Full house, three 8's or higher | 0.00113492 | 0.00027775 | 0.00027355 |
Full house, three 9's or higher | 0.00097379 | 0.00023772 | 0.00023445 |
Full house, three T's or higher | 0.00081113 | 0.00019759 | 0.00019503 |
Full house, three J's or higher | 0.00064763 | 0.00015708 | 0.00015509 |
Full house, three Q's or higher | 0.00048533 | 0.00011838 | 0.00011682 |
Full house, three K's or higher | 0.00032561 | 0.00008130 | 0.00008033 |
Full house, three A's or higher | 0.00016964 | 0.00004608 | 0.00004579 |
Full house, aces full of 3's or higher | 0.00016004 | 0.00004350 | 0.00004322 |
Full house, aces full of 4's or higher | 0.00014986 | 0.00004080 | 0.00004052 |
Full house, aces full of 5's or higher | 0.00013898 | 0.00003797 | 0.00003763 |
Full house, aces full of 6's or higher | 0.00012749 | 0.00003504 | 0.00003469 |
Full house, aces full of 7's or higher | 0.00011580 | 0.00003233 | 0.00003203 |
Full house, aces full of 8's or higher | 0.00010347 | 0.00002957 | 0.00002925 |
Full house, aces full of 9's or higher | 0.00009067 | 0.00002673 | 0.00002645 |
Full house, aces full of T's or higher | 0.00007714 | 0.00002383 | 0.00002359 |
Full house, aces full of J's or higher | 0.00006286 | 0.00002064 | 0.0000204 |
Full house, aces full of Q's or higher | 0.00004793 | 0.00001738 | 0.00001721 |
Full house, aces full of K's or higher | 0.00003230 | 0.00001408 | 0.00001402 |
Any four of a kind | 0.00001601 | 0.00001086 | 0.00001081 |
Four 3's or higher | 0.00001437 | 0.00000996 | 0.00000992 |
Four 4's or higher | 0.0000127 | 0.00000900 | 0.00000902 |
Four 5's or higher | 0.00001099 | 0.00000805 | 0.00000804 |
Four 6's or higher | 0.00000934 | 0.00000705 | 0.00000707 |
Four 7's or higher | 0.0000078 | 0.00000613 | 0.00000611 |
Four 8's or higher | 0.0000064 | 0.00000525 | 0.00000519 |
Four 9's or higher | 0.00000519 | 0.00000439 | 0.00000435 |
Four T's or higher | 0.00000414 | 0.00000359 | 0.00000357 |
Four J's or higher | 0.00000317 | 0.00000287 | 0.00000285 |
Four Q's or higher | 0.00000246 | 0.00000226 | 0.00000224 |
Four K's or higher | 0.00000193 | 0.00000180 | 0.00000179 |
Four A's or higher | 0.00000157 | 0.00000149 | 0.00000147 |
Any straight flush | 0.0000012 | 0.00000122 | 0.00000121 |
Straight flush 6 high or higher | 0.00000105 | 0.00000107 | 0.00000105 |
Straight flush 7 high or higher | 0.00000089 | 0.00000091 | 0.00000090 |
Straight flush 8 high or higher | 0.00000073 | 0.00000074 | 0.00000074 |
Straight flush 9 high or higher | 0.00000056 | 0.00000059 | 0.00000058 |
Straight flush T high or higher | 0.00000041 | 0.00000043 | 0.00000042 |
Straight flush J high or higher | 0.00000028 | 0.00000027 | 0.00000027 |
Straight flush Q high or higher | 0.00000012 | 0.00000012 | 0.00000012 |
Introduction
'Bad beat' is a term that can mean having an outstanding chance of winning a bet, only to still lose. The term can be used in any form of gambling but is most commonly applied to poker. Many poker rooms offer a progressive jackpot for very unlikely bad beats. Various other rules are added to ensure that only surprising bad beats win. Below I present tables of bad beat probabilities, starting with the most liberal rules, and ending with the most stringent. The most stringent rules, the 'Bad Beat Type 3', are the most common, in my experience.
Following are the rules for a type 1 bad beat.
- Both the bad beat and winning hand must be the best possible combination of five cards. In cases where the same hand can be created multiple ways (for example player has AK and the board shows AAKKQ) the player's hole cards will take priority.
- Both the bad beat and winning hand must make use of both hole cards.
- A full house must be beaten by a four of a kind or higher.
'Bad beat' is a term that can mean having an outstanding chance of winning a bet, only to still lose. The term can be used in any form of gambling but is most commonly applied to poker. Many poker rooms offer a progressive jackpot for very unlikely bad beats. Various other rules are added to ensure that only surprising bad beats win.
The rules for a type 2 bad beat are the same as type 1, plus any four of a kind, whether the bad beat hand or winning hand, must contain a pocket pair.
The rules for a type 3 bad beat are the same as type 2, plus a full house may not make use of a three of a kind entirely on the board.
In my experience, is the most common format for bad beat rules is type 3. The additional rule for type 3 makes very little difference, compared to type 2.
The following table shows the probability of each bad beat hand under all three types of rules. The table is based on a ten-player game in which nobody ever folds. The probabilities are for any pair of players meeting the qualifying rules. If you want to know YOUR probability of winning, you should divide the probability in the table by 10.
Bad Beat Probabilities
Bad Beat Hand | Type 1 | Type 2 | Type 3 |
---|---|---|---|
Any full house | 0.00203329 | 0.00050305 | 0.00049508 |
Full house, three 3's or higher | 0.00189512 | 0.00046978 | 0.00046204 |
Full house, three 4's or higher | 0.00175159 | 0.00043444 | 0.00042728 |
Full house, three 5's or higher | 0.00160333 | 0.00039706 | 0.00039028 |
Full house, three 6's or higher | 0.00144965 | 0.00035741 | 0.00035145 |
Full house, three 7's or higher | 0.0012936 | 0.00031767 | 0.00031266 |
Full house, three 8's or higher | 0.00113492 | 0.00027775 | 0.00027355 |
Full house, three 9's or higher | 0.00097379 | 0.00023772 | 0.00023445 |
Full house, three T's or higher | 0.00081113 | 0.00019759 | 0.00019503 |
Full house, three J's or higher | 0.00064763 | 0.00015708 | 0.00015509 |
Full house, three Q's or higher | 0.00048533 | 0.00011838 | 0.00011682 |
Full house, three K's or higher | 0.00032561 | 0.00008130 | 0.00008033 |
Full house, three A's or higher | 0.00016964 | 0.00004608 | 0.00004579 |
Full house, aces full of 3's or higher | 0.00016004 | 0.00004350 | 0.00004322 |
Full house, aces full of 4's or higher | 0.00014986 | 0.00004080 | 0.00004052 |
Full house, aces full of 5's or higher | 0.00013898 | 0.00003797 | 0.00003763 |
Full house, aces full of 6's or higher | 0.00012749 | 0.00003504 | 0.00003469 |
Full house, aces full of 7's or higher | 0.00011580 | 0.00003233 | 0.00003203 |
Full house, aces full of 8's or higher | 0.00010347 | 0.00002957 | 0.00002925 |
Full house, aces full of 9's or higher | 0.00009067 | 0.00002673 | 0.00002645 |
Full house, aces full of T's or higher | 0.00007714 | 0.00002383 | 0.00002359 |
Full house, aces full of J's or higher | 0.00006286 | 0.00002064 | 0.0000204 |
Full house, aces full of Q's or higher | 0.00004793 | 0.00001738 | 0.00001721 |
Full house, aces full of K's or higher | 0.00003230 | 0.00001408 | 0.00001402 |
Any four of a kind | 0.00001601 | 0.00001086 | 0.00001081 |
Four 3's or higher | 0.00001437 | 0.00000996 | 0.00000992 |
Four 4's or higher | 0.0000127 | 0.00000900 | 0.00000902 |
Four 5's or higher | 0.00001099 | 0.00000805 | 0.00000804 |
Four 6's or higher | 0.00000934 | 0.00000705 | 0.00000707 |
Four 7's or higher | 0.0000078 | 0.00000613 | 0.00000611 |
Four 8's or higher | 0.0000064 | 0.00000525 | 0.00000519 |
Four 9's or higher | 0.00000519 | 0.00000439 | 0.00000435 |
Four T's or higher | 0.00000414 | 0.00000359 | 0.00000357 |
Four J's or higher | 0.00000317 | 0.00000287 | 0.00000285 |
Four Q's or higher | 0.00000246 | 0.00000226 | 0.00000224 |
Four K's or higher | 0.00000193 | 0.00000180 | 0.00000179 |
Four A's or higher | 0.00000157 | 0.00000149 | 0.00000147 |
Any straight flush | 0.0000012 | 0.00000122 | 0.00000121 |
Straight flush 6 high or higher | 0.00000105 | 0.00000107 | 0.00000105 |
Straight flush 7 high or higher | 0.00000089 | 0.00000091 | 0.00000090 |
Straight flush 8 high or higher | 0.00000073 | 0.00000074 | 0.00000074 |
Straight flush 9 high or higher | 0.00000056 | 0.00000059 | 0.00000058 |
Straight flush T high or higher | 0.00000041 | 0.00000043 | 0.00000042 |
Straight flush J high or higher | 0.00000028 | 0.00000027 | 0.00000027 |
Straight flush Q high or higher | 0.00000012 | 0.00000012 | 0.00000012 |
Methodology
The above tables are the result of random simulations of about 2.5 billion rounds each.
Further Reading
Poker Bad Beat Jackpot
The video poker variant World Series of Poker - Final Table Bonus features a bad beat jackpot. See my section on that game for more information.
Brian Alspach has a very good page on Texas Hold'em, including a section on the Bad Beat Jackpot at Party Poker.
Poker Bad Beat Jackpot Odds Slot Machines
Written by: Michael Shackleford